根据不同的煤层气解吸条件和解吸特征,研究者将煤层气(物理)解吸进一步细分为降压解吸、置换解吸、扩散解吸和升温解吸等四个种类。当然,在这四类解吸作用中降压解吸是其中zui主要的也是对煤层气产出贡献zui大的。
(1)降压解吸
降压解吸是一种zui特征的物理解吸作用过程,也是煤层气开采过程中zuizui主要的一种解吸作用。降压解吸的基本特征是,被吸附在煤基质孔隙内表面的煤层气分子由于“外界压力”的降低而变得更为活跃以致于解脱了范德华力的束缚,由吸附态变为游离态。根据目前对降压解吸的基本认识,其解吸行为基本服从朗缪尔方程。
(2)置换解吸
置换解吸的本质是未被吸附的其他气体分子或水分子为而置换了处于吸附态的甲烷分子的位置,从而使原呈吸附态的甲烷分子变为游离态,故普遍存在于煤层气开采过程之中。事实上,置换解吸是“优胜劣汰的自然法则”的具体体现。一方面,未被吸附的其他气体分子和水分子,在普遍存在于各种原子、分子之间的范德华力作用下在不停地争取被吸附的机会,以力图达到动态平衡状态;另一方面,气体分子的热力学性质决定了这些被吸附的气体分子在不停地争脱范德华力束缚,变吸附态为游离态。
(3)扩散解吸
根据分子扩散理论,只要有浓度差存在,就有分子扩散运动,这是气体分子热力学性质所决定的。研究表明,甲烷气体分子在煤的孔隙内表面得以高度富集,这就与孔隙、裂隙内的流体构成了高梯度的浓度差,这种浓度差迫使甲烷分子扩散,从而造成非常规解吸。基于扩散的普遍存在性,因此扩散解吸也是煤层气开采过程中煤层气解吸的重要的一种作用类型。鉴于扩散解吸的实质是由于浓度差造成的扩散而导致的“解吸”,因此这种扩散的本身是偶于“解吸作用”之中的,是解吸作用与扩散作用的耦合。从解吸的角度,称之为“扩散解吸”。
(4)升温解吸
据现代物理化学研究表明,吸附剂对吸附质的吸附量是吸附质、吸附剂的性质及其相互作用、吸附平衡时的压力和温度的函数。温度与吸附量呈负相关,与解吸量呈正相关。温度升高,加速了气体分子的热运动,使其具有更高的能力可以逃逸范德华力的束缚而被解吸。有人将温度对解吸速率和解吸量的影响归于影响因素,我们认为温度与压力一样,都是引起解吸的一种动力,应将其定为一种解吸类型。这一类型在煤层气含量测定实验中早已得到证实。我们可以发现,在煤层气含量测定过程中,当解吸罐放入恒温水箱时,即使解吸罐内的压力在升高,煤层气解吸也会加速。在煤层气开采过程中,其温度往往几乎是“恒定的”。这是因为在煤层气开采过程中,无论是煤层气解吸、扩散还是渗流甚至水的渗流,均没有条件引起煤层温度发生重大变化。即使大量产水需要运距离的水源补给,也会在渗流过程中使其温度均衡。